147 research outputs found

    A Genome-Wide Association Study of Hypertension and Blood Pressure in African Americans

    Get PDF
    The evidence for the existence of genetic susceptibility variants for the common form of hypertension (“essential hypertension”) remains weak and inconsistent. We sought genetic variants underlying blood pressure (BP) by conducting a genome-wide association study (GWAS) among African Americans, a population group in the United States that is disproportionately affected by hypertension and associated complications, including stroke and kidney diseases. Using a dense panel of over 800,000 SNPs in a discovery sample of 1,017 African Americans from the Washington, D.C., metropolitan region, we identified multiple SNPs reaching genome-wide significance for systolic BP in or near the genes: PMS1, SLC24A4, YWHA7, IPO7, and CACANA1H. Two of these genes, SLC24A4 (a sodium/potassium/calcium exchanger) and CACNA1H (a voltage-dependent calcium channel), are potential candidate genes for BP regulation and the latter is a drug target for a class of calcium channel blockers. No variant reached genome wide significance for association with diastolic BP (top scoring SNP rs1867226, p = 5.8×10−7) or with hypertension as a binary trait (top scoring SNP rs9791170, p = 5.1×10−7). We replicated some of the significant SNPs in a sample of West Africans. Pathway analysis revealed that genes harboring top-scoring variants cluster in pathways and networks of biologic relevance to hypertension and BP regulation. This is the first GWAS for hypertension and BP in an African American population. The findings suggests that, in addition to or in lieu of relying solely on replicated variants of moderate-to-large effect reaching genome-wide significance, pathway and network approaches may be useful in identifying and prioritizing candidate genes/loci for further experiments

    African Ancestry Gradient Is Associated with Lower Systemic F 2

    Get PDF
    Context. Low levels of systemic F2-isoprostanes (F2-IsoP) increase the risk of diabetes and weight gain and were found in African Americans. Low F2-IsoPs could reflect an unfavorable metabolic characteristic, namely, slow mitochondrial metabolism in individuals with African ancestry. Objective. To examine differences in plasma F2-IsoPs in three groups with a priori different proportion of African ancestry: non-Hispanic Whites (NHWs), US-born African Americans (AAs), and West African immigrants (WAI). Design. Cross-sectional study. Setting. Georgia residents recruited from church communities. Participants. 218 males and females 25–74 years of age, who are self-identified as NHW (n=83), AA (n=56), or WAI (n=79). Main Outcome Measure(s). Plasma F2-IsoPs quantified by gas chromatography-mass spectrometry. Results. After adjustment for age, gender, obesity, and other comorbidities, WAI had lower levels of plasma F2-IsoP than AA (beta-coefficient = −9.8, p<0.001) and AA had lower levels than NHW (beta-coefficient = −30.3, p<0.001). Similarly, among healthy nonobese participants, F2-IsoP levels were lowest among WAI, followed by AA, and the highest levels were among NHW. Conclusion. Plasma F2-IsoPs are inversely associated with African ancestry gradient. Additional studies are required to test whether optimization of systemic F2-IsoP levels can serve as means to improve race-specific lifestyle and pharmacological intervention targeted to obesity prevention and treatment

    Development of admixture mapping panels for African Americans from commercial high-density SNP arrays

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Admixture mapping is a powerful approach for identifying genetic variants involved in human disease that exploits the unique genomic structure in recently admixed populations. To use existing published panels of ancestry-informative markers (AIMs) for admixture mapping, markers have to be genotyped <it>de novo </it>for each admixed study sample and samples representing the ancestral parental populations. The increased availability of dense marker data on commercial chips has made it feasible to develop panels wherein the markers need not be predetermined.</p> <p>Results</p> <p>We developed two panels of AIMs (~2,000 markers each) based on the Affymetrix Genome-Wide Human SNP Array 6.0 for admixture mapping with African American samples. These two AIM panels had good map power that was higher than that of a denser panel of ~20,000 random markers as well as other published panels of AIMs. As a test case, we applied the panels in an admixture mapping study of hypertension in African Americans in the Washington, D.C. metropolitan area.</p> <p>Conclusions</p> <p>Developing marker panels for admixture mapping from existing genome-wide genotype data offers two major advantages: (1) no <it>de novo </it>genotyping needs to be done, thereby saving costs, and (2) markers can be filtered for various quality measures and replacement markers (to minimize gaps) can be selected at no additional cost. Panels of carefully selected AIMs have two major advantages over panels of random markers: (1) the map power from sparser panels of AIMs is higher than that of ~10-fold denser panels of random markers, and (2) clusters can be labeled based on information from the parental populations. With current technology, chip-based genome-wide genotyping is less expensive than genotyping ~20,000 random markers. The major advantage of using random markers is the absence of ascertainment effects resulting from the process of selecting markers. The ability to develop marker panels informative for ancestry from SNP chip genotype data provides a fresh opportunity to conduct admixture mapping for disease genes in admixed populations when genome-wide association data exist or are planned.</p

    Refining the impact of TCF7L2 gene variants on type 2 diabetes and adaptive evolution

    Get PDF
    To access publisher full text version of this article. Please click on the hyperlink in Additional Links fieldWe recently described an association between risk of type 2diabetes and variants in the transcription factor 7-like 2 gene (TCF7L2; formerly TCF4), with a population attributable risk (PAR) of 17%-28% in three populations of European ancestry. Here, we refine the definition of the TCF7L2 type 2diabetes risk variant, HapB(T2D), to the ancestral T allele of a SNP, rs7903146, through replication in West African and Danish type 2 diabetes case-control studies and an expanded Icelandic study. We also identify another variant of the same gene, HapA, that shows evidence of positive selection in East Asian, European and West African populations. Notably, HapA shows a suggestive association with body mass index and altered concentrations of the hunger-satiety hormones ghrelin and leptin in males, indicating that the selective advantage of HapA may have been mediated through effects on energy metabolism

    Genome-wide association study of type 2 diabetes in Africa

    Get PDF
    Abstract: Aims/hypothesis: Genome-wide association studies (GWAS) for type 2 diabetes have uncovered >400 risk loci, primarily in populations of European and Asian ancestry. Here, we aimed to discover additional type 2 diabetes risk loci (including African-specific variants) and fine-map association signals by performing genetic analysis in African populations. Methods: We conducted two type 2 diabetes genome-wide association studies in 4347 Africans from South Africa, Nigeria, Ghana and Kenya and meta-analysed both studies together. Likely causal variants were identified using fine-mapping approaches. Results: The most significantly associated variants mapped to the widely replicated type 2 diabetes risk locus near TCF7L2 (p = 5.3 × 10−13). Fine-mapping of the TCF7L2 locus suggested one type 2 diabetes association signal shared between Europeans and Africans (indexed by rs7903146) and a distinct African-specific signal (indexed by rs17746147). We also detected one novel signal, rs73284431, near AGMO (p = 5.2 × 10−9, minor allele frequency [MAF] = 0.095; monomorphic in most non-African populations), distinct from previously reported signals in the region. In analyses focused on 100 published type 2 diabetes risk loci, we identified 21 with shared causal variants in African and non-African populations. Conclusions/interpretation: These results demonstrate the value of performing GWAS in Africans, provide a resource to larger consortia for further discovery and fine-mapping and indicate that additional large-scale efforts in Africa are warranted to gain further insight in to the genetic architecture of type 2 diabetes

    The African Genome Variation Project shapes medical genetics in Africa.

    Get PDF
    Given the importance of Africa to studies of human origins and disease susceptibility, detailed characterization of African genetic diversity is needed. The African Genome Variation Project provides a resource with which to design, implement and interpret genomic studies in sub-Saharan Africa and worldwide. The African Genome Variation Project represents dense genotypes from 1,481 individuals and whole-genome sequences from 320 individuals across sub-Saharan Africa. Using this resource, we find novel evidence of complex, regionally distinct hunter-gatherer and Eurasian admixture across sub-Saharan Africa. We identify new loci under selection, including loci related to malaria susceptibility and hypertension. We show that modern imputation panels (sets of reference genotypes from which unobserved or missing genotypes in study sets can be inferred) can identify association signals at highly differentiated loci across populations in sub-Saharan Africa. Using whole-genome sequencing, we demonstrate further improvements in imputation accuracy, strengthening the case for large-scale sequencing efforts of diverse African haplotypes. Finally, we present an efficient genotype array design capturing common genetic variation in Africa
    corecore